1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
| import torchvision import torch from torch import nn import time
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") train_data = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=torchvision.transforms.ToTensor()) test_data = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor()) train_data_size = len(train_data) test_data_size = len(test_data) print("训练数据集的长度为:{}".format(train_data_size)) print("测试数据集的长度为:{}".format(test_data_size))
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False) test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)
class mrk_dataset(torch.nn.Module): def __init__(self): super(mrk_dataset, self).__init__() self.model = nn.Sequential( nn.Conv2d(3, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 32, 5, 1, 2), nn.MaxPool2d(2), nn.Conv2d(32, 64, 5, 1, 2), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64*4*4, 64), nn.Linear(64, 10) ) def forward(self, x): x = self.model(x) return x m = mrk_dataset() m.to(device)
loss_fn = nn.CrossEntropyLoss() loss_fn = loss_fn.to(device)
learning_rate = 1e-2 optimizer = torch.optim.SGD(m.parameters(), lr=learning_rate)
total_train_step = 0 total_test_step = 0 epoch = 10 start_time = time.time()
for i in range(epoch): print("-------第 {} 轮训练开始-------".format(i+1)) m.train() for data in train_loader: imgs, targets = data imgs = imgs.to(device) targets = targets.to(device) outputs = m(imgs) loss = loss_fn(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step()
total_train_step = total_train_step + 1 if total_train_step % 100 == 0: end_time = time.time() print("训练时间:{}".format(end_time-start_time)) print("训练次数:{},Loss:{}".format(total_train_step, loss.item())) m.eval() total_test_step = 0 total_accuracy = 0 with torch.no_grad(): for data in test_loader: imgs, targets = data imgs = imgs.to(device) targets = targets.to(device) outputs = m(imgs) loss = loss_fn(outputs, targets) total_test_step = total_test_step + loss.item() accuracy = (outputs.argmax(1) == targets).sum() total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_step)) print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size)) total_test_step = total_test_step + 1
# torch.save(m, "m_{}.pth".format(i)) # #torch.save(m.state_dict(), "m_{}.pth".format(i)) # print("模型已保存")
|